

Global Data Center AI Chip Packaging Market Forecast 2024-2030

Unlocking Fast-Growing Opportunities in AI Wave

Contents

CH1 Executive Summary

CH2 Definition & Major Assumptions

**CH3 Why Advanced Packaging
Matters?**

**CH4 Global and Taiwan's Data Center AI
Chip Packaging Market Forecast**

4-1 Global Data Center AI Chip Shipment Forecast

**4-2 Global Data Center AI Chip Packaging Market
Forecast**

**4-3 Taiwan's Data Center AI Chip Packaging
Market Forecast**

**4-4 Analysis and Forecast of Major Taiwanese
Players' Data AI Chip Packaging Revenue**

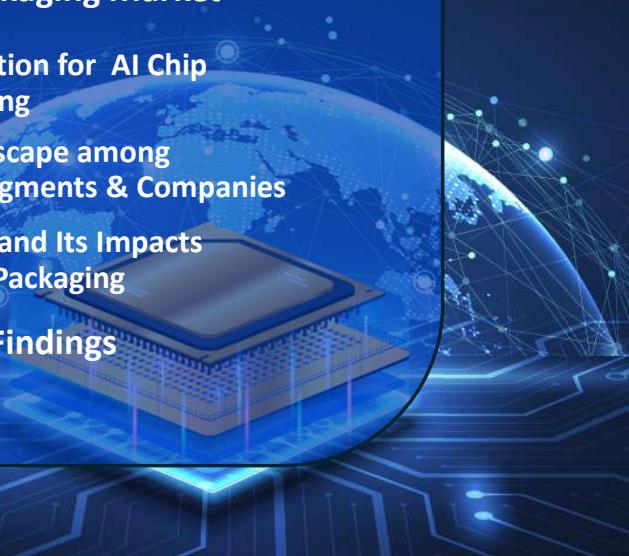
**CH5 Ecosystem and Market Forecast of the
Data Center AI Chip Packaging Industry
in Taiwan**

5-1 CoWoS

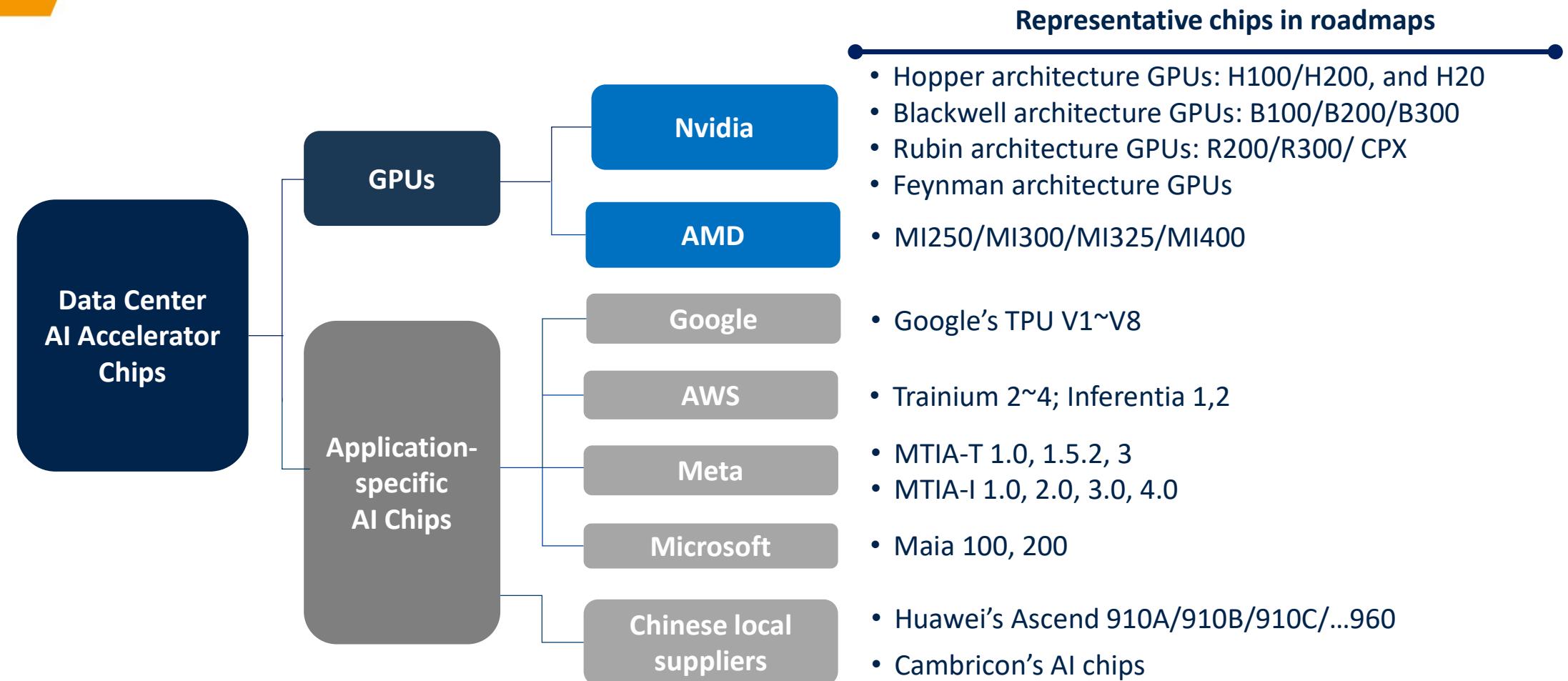
5-2 System on Wafer (SoW)

5-3 SoIC

5-4 HBM Packaging

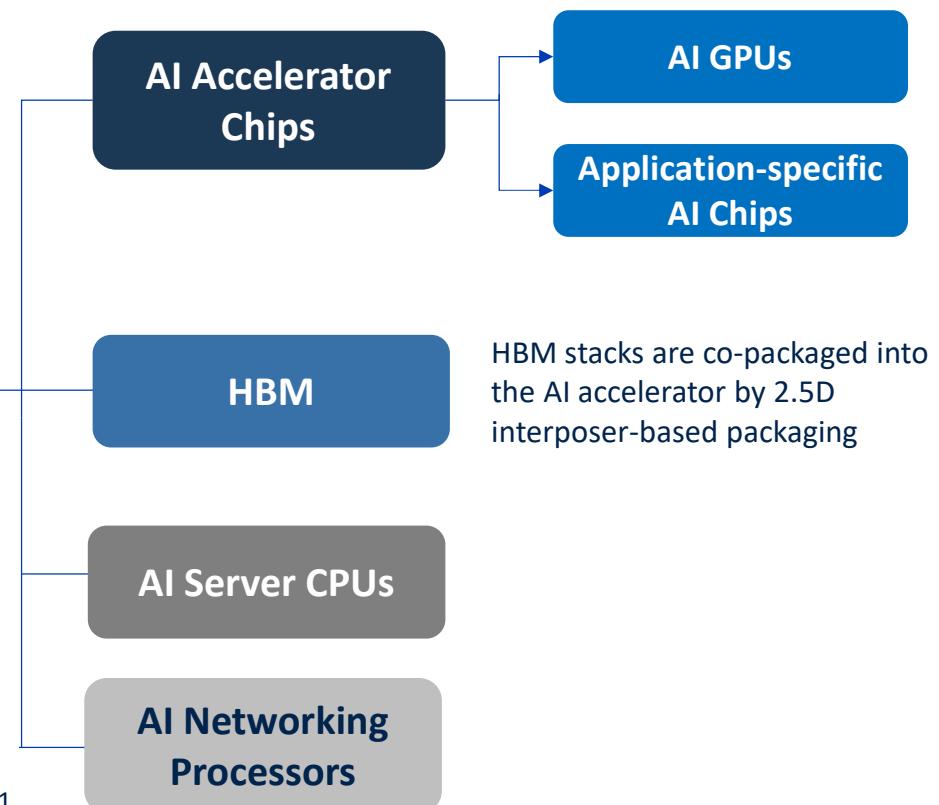

**CH6 Competitive Landscape in the Data
Center AI Chip Packaging Market**

**6-1 Technology Transition for AI Chip
Advanced Packaging**


**6-2 Competitive Landscape among
Semiconductor Segments & Companies**

**6-3 US-China Tension and Its Impacts
on the Advanced Packaging**

CH7 Conclusion and Findings

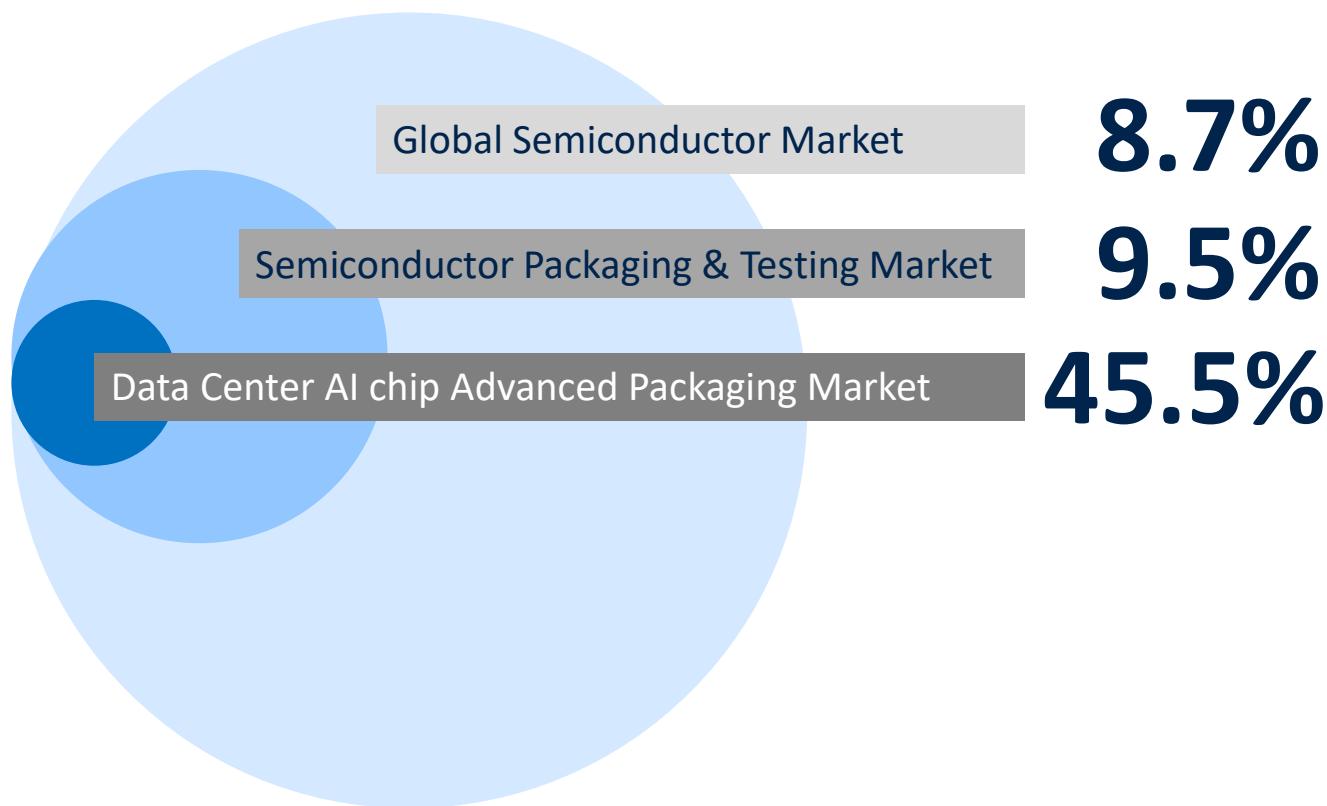


Definition: Data Center AI Chips – AI Accelerators

Note : GPUs stand for general-purpose GPUs, and application-specific AI chips include AI ASICs and AI ASSPs.

Definition: Data Center AI Chip Advanced Packaging

Source: DIGITIMES, 2025/11

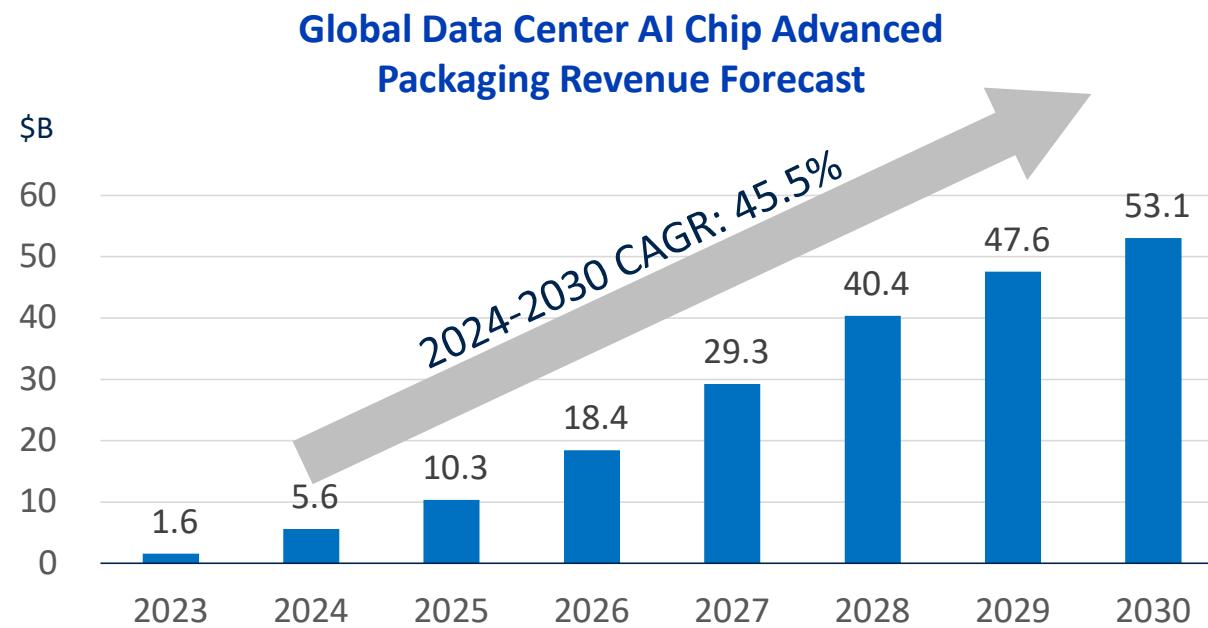

Representative packaging technologies

- CoWoS, FoCoS-Bridge, FOEB, Foveros
- System on Wafer (SoW)
- SiIC, Foveros Direct, X-Cube
- CoWoS, FoCoS-Bridge, FOEB, Foveros
- SoW
- SiIC, Foveros Direct, X-Cube
- Micro-bump TCB (Thermo-Compression Bonding)
- Hybrid Bonding (2028~)
- CoWoS, FoCoS-Bridge, Foveros, EMIB
- Foveros Direct
- Not including 2D Fan-outs and traditional FC-BGA packaging.
- CoWoS and similar technologies
- 2.5D Fan-out for Co-Packaged Optics (CPO)
- SiIC for EIC/PIC integration in optical engines(OE)

- In the following pages, the term “custom AI chips” is equivalent to “application-specific AI chips,” and “GPU” is equivalent to “GPGPU”.
- AI networking processors consist of Switch ICs, DPUs/SmartNICs, and custom AI rack-scale-up interconnect chips for NVSwitch/UAIlink and similar AI networking technologies within the rack.

Executive Summary (1): Data Center AI Chip Advanced Packaging Growth Strongly Outpacing the Semiconductor Market

2024–2030 Growth Comparison: Semiconductor, Packaging & Testing, and AI Chip Advanced Packaging



- With the generative AI surge, the global semiconductor market is set to exceed US\$1 trillion by 2030, growing at an 8.7% CAGR from 2024–2030.
- The overall packaging and testing segment is growing faster at a 9.5% CAGR over the same timeframe.
- Crucially, the datacenter AI chip advanced packaging market is poised for explosive growth, featuring an impressive 45.5% CAGR through 2030.

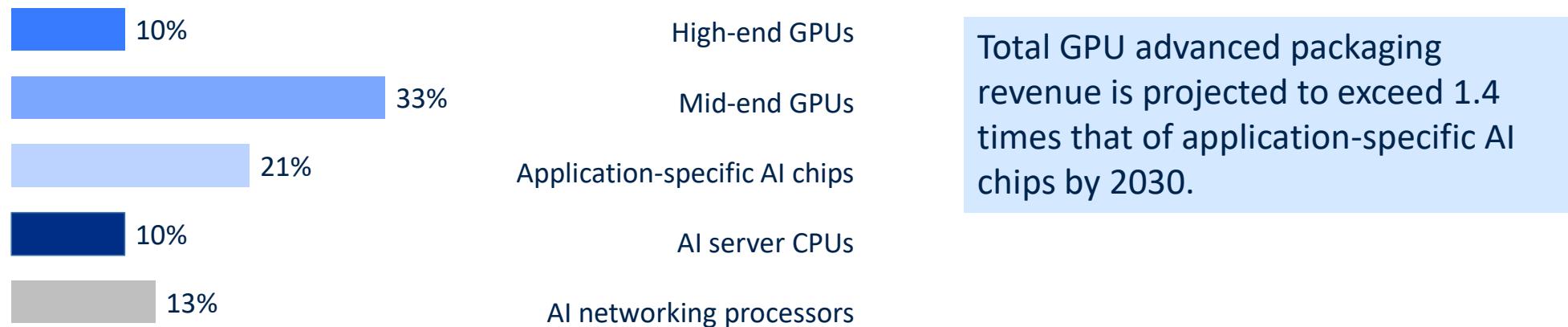
Executive Summary (2): Datacenter AI Advanced Packaging to Hit \$53.1B, Driven by CoWoS and other 2.5D/3D Technologies

Global data center AI chip advanced packaging revenue increases from \$5.6B in 2024 to \$53.1B in 2030, with a 45.5% CAGR.

- Data center AI chip advanced packaging includes 2.5D CoWoS, 3D SoIC, SoW, and similar packaging technologies for AI accelerators, AI server CPUs, HBM, and AI networking.
- CoWoS (Chip-on-Wafer-on-Substrate)/CoPoS (Chip-on-Panel-on-Substrate) and similar technologies are expected to account for 58% of the market by 2030.
- System on Wafer(SoW) and SoIC-like 3D stacking will gain market share from CoWoS.

Executive Summary (3): Taiwanese players will continue to hold over 70% of the data center AI chip packaging market by 2030

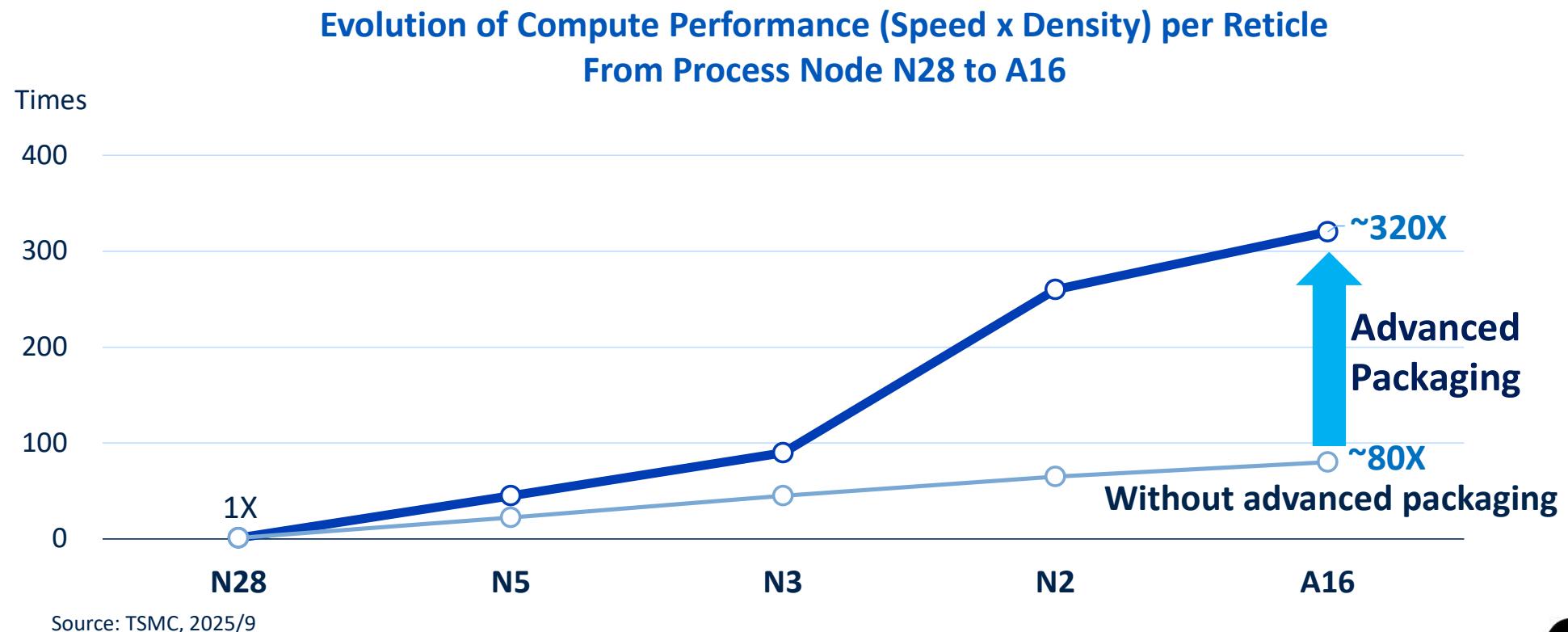
- Taiwan's share of global data-center AI chip packaging is projected to moderately decline from 77% in 2024 to 70% by 2030, indicating increasing competition from other regions.
 - Intel, Samsung, and Rapidus are all working on their own advanced packaging technologies.
 - Amkor and other companies, such as those from Singapore and Malaysia, will increase their investments in advanced packaging.
 - China's self-sufficiency policy will boost the growth of Chinese local companies in the advanced packaging sector.
- Why can Taiwanese vendors still hold a 70% market share by 2030?
 - TSMC is the leader in advanced wafer fabrication and in various 2.5D/3D packaging technologies.
 - Besides TSMC, Taiwan has a highly competitive AI rack and semiconductor supply chain that collaborates closely with leading hyperscalers and leading chip platform vendors.


Taiwanese Vendors' Data Center AI Chip Advanced Packaging Revenue Forecast

Source: DIGITIMES, 2025/11

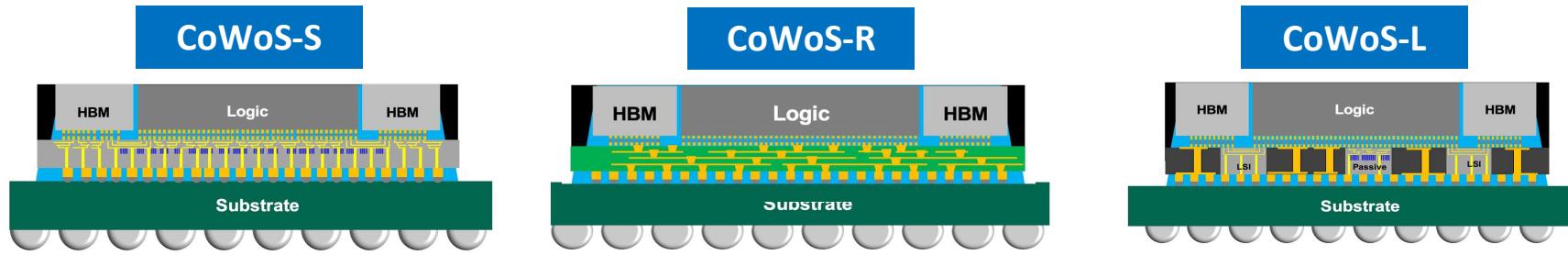
Application-specific AI Chip Shipments CAGR by 21% from 2024 to 2030, Surpassing the growth of AI GPUs and CPUs

Data Center AI Chip Shipment CAGR (2024-2030)



Source: DIGITIMES, 2025/11

- The mid-end GPUs will grow fastest due to their low base in 2024. On the other hand, High-end GPUs have the lowest CAGR (9.9%) due to their high base in 2024 and the increase in dies per chip in the coming years. It is worth noting that high-end GPUs will remain the largest segment of the AI chip market in terms of foundry revenue by 2030, mainly due to their large chip sizes and adoption of advanced process technologies.
- The CAGR of application-specific AI chips will be higher than that of GPUs.
 - The shipment of Google TPUs will increase significantly for internal use and for external GCP customers such as Apple, OpenAI, and Anthropic.
 - The catch-up of Chinese vendors like Huawei and Cambricon to support China's self-sufficiency policy.
- AI server CPU shipments CAGR is expected to grow (10%) because the demand for GPUs and application-specific AI chips is much higher than that for CPUs.
- AI networking chips have a 13% CAGR, but only high-end switch chips require CoWoS or other 2.5D packaging to reduce the path length for large switch dies and HBM.


Advanced Packaging Improves Performance Significantly

- Without advanced packaging, compute performance per reticle area would increase by 80X (purely due to process-node improvements) from N28 to A16.
- Combined with advanced packaging, the compute performance of the A16 process node achieves a 320X improvement over the N28 node.

CoWoS-L Combines the Benefits of CoWoS-S and CoWoS-R, Offering High Performance and Large Interposer Availability

Comparison of CoWoS Family

Source: TSMC, 2023

	CoWoS-S	CoWoS-R	CoWoS-L
Interposer material	Silicon	Redistribution Layers (RDL)	Silicon Bridge + RDL
Interposer size	1~3.3X reticle size	1.4~5.5X	3X ~ >9X
# of HBM Stacks	8	8/12	8/12/16
Performance	good	medium	good
Cost	high	Lower than CoWoS-S	Initially highest for complexity
Applications	AI accelerators; FPGA for data center and networking	AI accelerators; AI networking ICs; (suitable for cost-concerned and large interposer applications)	AI/HPC: especially suitable for large interposers to attach more big dies and multiple HBM stacks.
Customers	Nvidia, AMD, Google...	AWS	First customer: Nvidia (Blackwell)

Source: DIGITIMES, 2025/11

10 ■ CoWoS-L and CoWoS-R are the solutions for larger interposers, CoWoS-L can also provide near the CoWoS-S performance in finer pitch applications.

Appendix

[Our Team](#)

[About DIGITIMES Research](#)

[Contact Us](#)

[Disclaimer](#)

OUR TEAM

OUR TEAM

Co-Researcher

Eric Huang
Vice President
#Semiconductor

Co-Researcher

Tony Huang
Director
#Semiconductor & Display

About DIGITIMES介紹

【關於DIGITIMES】DIGITIMES成立於1998年，為大中華地區報導科技產業全球供應鏈、區域市場、科技應用及市場趨勢首屈一指的專業媒體平台，具備貫穿產業上中下游與終端市場的研究數據、產銷資料與專業評析，並提供諮詢服務為客戶帶來產業宏觀趨勢與注入前瞻價值。

DIGITIMES研究服務掌握科技產業全球供應鏈，專注於資訊、消費性電子、通訊、半導體、汽車科技、人工智慧、物聯網及平面顯示器等領域，以及區域市場的研究報告。自成立以來，研究中心已發表超過7,000篇高影響力的報告。未來，研究中心將持續推動前沿科技研究，擴展內容和服務範圍，致力成為提供關鍵洞察和引領科技發展的先驅。

研究報告

研究報告涵蓋七大領域23個頻道與全球產業數據，每年發佈超過300篇報告，內容以分析全球及台灣產銷狀況、產業發展現況、產品技術趨勢、領導廠商策略及競爭態勢。包括區域及新興市場研究和關鍵零組件發展，即時提供客戶所需的產業情報，為台灣最專業且權威的產業分析服務。

到府簡報

以九大分類提供宏觀大勢/供應鏈布局、半導體、Display Trends通訊產業趨勢/5G/B5G/、垂直應用/專網/O-RAN、NB/高效能運算(HPC)/Cloud、EV/未來車、AI、物聯網(IoT)、智慧應用/數位轉型等領域的研究報告為基礎，整合當前產業發展熱門議題，提供企業專屬的到府簡報服務。

系列論壇

以科技大勢為焦點的系列論壇，每年精心策劃四場圍繞當前熱門議題的精彩活動，探討最新科技趨勢與創新應用，此外，還有一場年度重磅論壇，科技大勢展望未來，解析未來科技發展方向與潛在機遇，幫助企業掌握先機，提升競爭力。論壇旨在促進科技與產業的深度融合，推動創新發展，共同迎接科技新時代的挑戰和機遇。

Special Report

每年推出四篇長篇報告，深入分析當前焦點產業，提供全面的產業脈絡、市場動態及技術演進。報告旨在為企業領袖、投資者和從業者提供權威的資訊和深刻的洞察，幫助他們掌握產業趨勢，做出明智決策。通過詳細的數據分析和專業見解，助企業在快速變化的市場中保持競爭優勢，洞悉未來發展機遇，驅動創新和增長。

顧問專案

根據企業的研究需求，訂定專屬研究範疇，提供量身定製的研究服務。專注於資訊、消費性電子、通訊、半導體、汽車科技、人工智慧、物聯網、平面顯示器等領域。以深入的產業分析和專業見解，助力企業洞悉市場趨勢，制定精確策略，在快速變化的科技環境中抓住機遇，實現創新和提升競爭力。

聯絡我們

有任何問題，歡迎隨時跟我們聯繫，我們很樂意為您服務。

服務時間：周一至周五 09:00~18:00

客服專線：+886-2-8712-5398

傳真：+886-2-8712-3366

客服信箱：member@digitimes.com

免責聲明

本公司所提供之報告內容係根據本公司認可之資料來源，並基於特定日期所進行之判斷，惟由於產業倍速變動、資訊之不完整及其他不確定因素，本公司並不保證本研究報告內容於未來仍具備正確性與完整性，報告中所有的意見及預估，如有變更恕不另行通知。

本研究報告資訊，僅提供客戶做為一般參考，並非針對特定對象提供專屬之建議，使用者如有參考或內部引用時做為決策依據，應自行判斷衡量該資訊，並自負引用之結果。除顯係可歸責乙方之事由外，使用者不得因使用本研究報告資訊所造成之任何直接或間接之損害要求乙方負責。本報告之內容取材自據信為可靠之資料來源，但概不以明示或默示的方式，對資料之準確性、完整性或正確性作出任何陳述或保證。本研究報告載述意見進行更改與撤回不再另行通知使用者。本研究報告內容屬大橡股份有限公司（以下簡稱DIGITIMES）之著作權，嚴禁抄襲與仿造，具體詳請參閱本報告之著作權聲明。

著作權聲明

大橡股份有限公司（DIGITIMES）所屬網站與平面刊物（DIGITIMES科技網、智慧應用、橡經閣、活動+、電子時報等）上刊載的所有內容，包括但不限於文字報導、照片、影像、插圖、錄音片、影音片、檔案、網站畫面的安排、網頁設計等素材，均受到中華民國著作權法、國際著作權法律及智慧財產權相關法律的保障，相關智慧財產權包括但不限於商標權、專利權、著作權、營業秘密與專有技術等。

網站與平面刊物內容的著作權為大橡股份有限公司（DIGITIMES）所有，或其他授權DIGITIMES使用的內容提供者所有。

使用者下載或拷貝網站與平面刊物的內容或服務僅限於供個人、非商業用途之使用，但不得以任何形式傳輸、重製、散布或提供予公眾。使用人利用時必須遵守著作權法的所有相關規定，不可變更、發行、播送、轉賣、重製、改作、散布、表演、展示或利用DIGITIMES所屬網站與平面刊物上局部或全部內容及服務以賺取利益。